martes, 31 de mayo de 2016

"Vitaminas"

Las vitaminas son substancias químicas no sintetizables por el organismo, presentes en pequeñas cantidades en los alimentos y son indispensables para la vida, la salud, la actividad física y cotidiana.
Las vitaminas no producen energía y por tanto no implican calorías. Intervienen como catalizador en las reacciones bioquímicas provocando la liberación de energía. En otras palabras, la función de las vitaminas es la de facilitar la transformación que siguen los sustratos a través de las vías metabólicas.
Identificar las vitaminas ha llevado a que hoy se reconozca, por ejemplo, que en el caso de los deportistas haya una mayor demanda vitamínica por el incremento en el esfuerzo físico, probándose también que su exceso puede influir negativamente en el rendimiento.
Conociendo la relación entre el aporte de nutrientes y el aporte energético, para asegurar el estado vitamínico correcto, es siempre más seguro privilegiar los alimentos de fuerte densidad nutricional (legumbrescereales y frutas) por sobre los alimentos meramente calóricos.

Las vitaminas se dividen en dos grandes grupos:
Vitaminas Liposolubles: Aquellas solubles en cuerpos lípidos.
Vitaminas Hidrosolubles: Aquellas solubles en líquidos.

Descubriendo las vitaminas
Entre los años 1906 y 1912 el gran bioquímico inglés Sir Frederick Hopkins, fue quien propuso para esas sustancias desconocidas que hoy llamamos vitaminas el nombre de "factores accesorios de la alimentación".
Todo se inicio cuando comenzaron a estudiar el porque se producían ciertas enfermedades y se llego a la conclusión de que las diferentes dolencias se generaban por la falta de algunas sustancias: carencias.
En aquellos años no se conocía la estructura química de las vitaminas, pero si se sabia que algunas aparecían asociadas a los componentes grasos de los alimentos (vitaminas liposolubles), y otras a la parte acuosa (vitaminas hidrosolubles).
El descubrimiento de las vitaminas ha escrito una de las páginas más brillantes de la ciencia moderna y ha sido el resultado de la estrecha colaboración entre las distintas disciplinas científicas.


Es necesaria para el crecimiento y desarrollo de huesos.
Escencial para el desarrollo celular
Ayuda al sistema inmune
Es fundamental para la visión, el Retinol contribuye a mejorar la visión nocturna
Antioxidante
En la transformación de los alimentos en energía
Absorción de glucosa por parte del sistema nervioso
Interviene en la transformación de los alimentos en energía
Ayuda a conservar una buena salud visual.
Conserva el buen estado de las células del sistema nervioso.
Interviene en la regeneración de los tejidos de nuestro organismo (piel, cabellos, uñas)
Produce glóbulos rojos junto a otras vitaminas del complejo B, y en conjunto con la niacina y piridoxina mantiene al sistema inmune en perfecto estado.
Complementa la actividad antioxidante de la vitamina E.
Obtención de energía a partir de los glúcidos o hidratos de carbono.
Mantiene el buen estado del sistema nervioso junto a la piridoxina (vitamina B6) y la riboflavina (vitamina B2).
Mejora el sistema circulatorio
Mantiene la piel sana
mantiene sanas las mucosas digestivas.
Estabiliza la glucosa en sangre.
Interviene en la transformación de hidratos de carbono y grasas en energía
Interviene en el proceso metabólico de las proteínas
Mejora la circulación general
Ayuda en el proceso de producción de ácido clorhídrico en el estómago
Mantiene el sistema nervioso en buen estado
Mantiene el sistema inmune
Interviene en la formación de hemoglobina en sangre
Es fundamental su presencia para la formación de Niacina o vitamina B3
Ayuda a absorber la vitamina B12 o cobalamina.
Interviene en la síntesis de ADN, ARN y proteínas
Interviene en la formación de glóbulos rojos.
Mantiene la vaina de mielina de las células nerviosas
Participa en la síntesis de neurotransmisores
Es necesaria en la transformación de los ácidos grasos en energía
Ayuda a mantener la reserva energética de los músculos
Interviene en el buen funcionamiento del sistema inmune
Es necesaria para el metabolismo del ácido fólico.
Antioxidante
Mejora la visión
Es antibacteriana, por lo que inhibe el crecimiento de ciertas bacterias dañinas para el organismo.
Repara y mantiene cartílagos, huesos y dientes.
Reduce las complicaciones derivadas de la diabetes tipo II
Disminuye los niveles de tensión arterial y previene la aparición de enfermedades vasculares
Tiene propiedades antihistamínicas
Ayuda a prevenir o mejorar afecciones de la piel como eccemas o soriasis.
Es imprescindible en la formación de colágeno.
Aumenta la producción de estrógenos durante la menopausia
Mejora el estreñimiento por sus propiedades laxantes.
El rol más importante de esta vitamina es mantener los niveles de calcio y fósforo normales.
Participa en el crecimiento y maduración celular.
Fortalece al sistema inmune ayudando a prevenir infecciones.
Es un antioxidante natural
Cumple un rol importante en cuanto al mantenimiento del sistema inmune saludable
Protege al organismo contra los efectos del envejecimiento.
Es esencial en el mantenimiento de la integridad y estabilidad de la membrana axonal (membrana de las neuronas).
Previene la trombosis.
Es importante en la formación de fibras elásticas y colágenas del tejido conjuntivo. Promueve la cicatrización de quemaduras.
Protección contra la destrucción de la vitamina A, selenio, ácidos grasos y vitamina C.
Protección contra la anemia.
Coagulación sanguínea
Participa en el metabolismo oseo ya que una proteína ósea llamada osteocalcina requiere de la vitamina K para su maduración.
Acidos previamente considerados vitaminas
Participa en el metabolismo del ADN, ARN y proteínas,
Necesario para la formación de glóbulos rojos,
Reduce el riesgo de aparición de defectos del tubo neural del futuro bebé como lo son la espina bífida y la anencefalia,
Disminuye la ocurrencia de enfermedades cardiovasculares,
Previene algunos tipos de cáncer,
Estimula la formación de ácidos digestivos.
Forma parte de la Coenzima A.
Interviene en la síntesis de hormonas antiestrés (adrenalina) en las glándulas suprarrenales, a partir del colesterol.
Interviene en el metabolismo de proteínas, hidratos de carbono y grasas.
Es necesaria para la formación de anticuerpos
Interviene en la síntesis de hierro.
Interviene en la formación de insulina.
Ayuda a aliviar los síntomas de la artritis.
Reduce la acidez estomacal junto a la biotina y la tiamina.
Ayuda a disminuir los niveles de colesterol en sangre.
Mejorar y aliviar trastornos ocasionados por el estrés.
Mejora algunas afecciones de la piel.
Interviene en la formación de hemoglobina.
Interviene en procesos celulares a nivel genético.
Interviene en el proceso de obtención de energía a partir de la glucosa.
Es necesaria su presencia para la correcta metabolizacion de hidratos de carbono, proteínas y lípidos.
Funciona en conjunto con el ácido fólico y el ácido pantoténico.
Mantiene las uñas, piel y cabellos sanos.
Ayuda a prevenir la neuropatía diabética y estabiliza los niveles de azúcar en sangre (glucemia).
Participa en la metabolización de grasas para producir energía.
Mejora la circulación sanguínea.
Desintoxica a nuestro organismo del amoníaco, sustancia que deriva de la descomposición de las proteínas.
Falicita la oxidación de la glucosa.
Disminuye el riesgo de depósitos grasos en el hígado.

Los requerimientos diarios y el estado nutricional

Las vitaminas son fundamentales para las diferentes especies, puesto que no pueden sintetizarse en el organismo y eso es justamente lo que la define como tal: la necesidad de su presencia en la dieta.
Una persona que lleva una alimentación normal o completa, nunca presenta carencia o exceso de vitaminas.
El requerimiento diario de vitaminas que el organismo necesita ha sido establecido cientificamente tras años de investigación. 
Las cantidades necesarias son diferentes según sea el sexo y la edad de la persona; y en el caso de las mujeres también cambia durante el embarazo y la lactancia.
Sus valores se expresan en diferentes unidades, generalmente microgramos (µg) o miligramos (mg.) según sea la vitamina de la que se habla, pero también se puede encontrar indicada en unidades internacionales (UI).
Requerimiento diario de:
Hombres
Mujeres
900 µg
700 µg
5 µg
15 mg
120 mg
90 mg
1.2 mg
1.1 mg
1.3 mg
1.1 mg
16 mg
14 mg
1.3 mg
2.4 µg
2.4 µg
90 mg
75 mg
La tabla muestra los requerimientos diarios de vitaminas para una persona promedio con edad entre 19 y 50 años segun el departamento de nutrición del IOM (Institute of Medicine - Instituto de Medicina) y la USDA (United States Department of Agriculture).
Para ver en detalle los requerimientos diarios que corresponden a cada vitamina clickee sobre la vitamina correspondiente en la columna izquierda de la tabla.
µg son microgramos.
mg son miligramos.

Existe un número de actividades cotidianas que interfieren al buen estado nutricional y vitamínico, a los cuales se los debe considerar como contrarios a las vitaminas, y están comprendidas principalmente por el consumo de tabaco, alcohol, café y te en exceso, ciertos medicamentos y losmétodos de cocción de los alimentos que afectan a su conservación.
Algunas personas cuentan con carencias vitamínicas sistemáticas, y son candidatos a predisponerse a problemas por carencia de atención a falencias alimenticias. A este grupo de riesgo puede considerárselo frecuentemente como víctimas de este tipo de problemas.
La prescripción dietética médica apuntará a favorecer el enriquecimiento de la alimentación, según las necesidades individuales y sin favorecer calorías o desequilibrios en forma inapropiada.

Exceso de vitaminas o hipervitaminosis
Así como son indispensables para el organismo, el exceso de vitaminas puede tener efectos graves sobre la salud. A esto se llama hipervitaminosis. En muchos casos el exceso puede ser tóxico para el organismo, por tanto se debe tener cuidado especialmente cuando se suplementa a una persona con vitaminas.
Por lo general, una persona que lleva una alimentación normal o completa, nunca presenta carencia o exceso de vitaminas.
Los casos particulares al exceso de cada vitamina, a como el organismo los demuestra y a sus posibles consecuencias, vea la página de cada vitamina y consulte además a su médico.

Coenzima

 Una coenzima es una molécula orgánica pequeña necesaria para la actividad de una enzima. Las coenzimas son cofactores de naturaleza orgánica.

Una coenzima es un cofactor de naturaleza orgánica. Las coenzimas son necesarias para la actividad de muchas enzimas. La tetrahidrobiopterina, el ATP, el GTP, el NAD, la coenzima A o la coencima Q son algunos ejemplos de coenzimas. Muchas coenzimas son vitaminas o derivados de ellas especialmente de la vitamina B.

Normalmente sufren reacciones de oxidación, reducción y transferencia de grupos químicos. Las coenzimas sufren las transformaciones químicas necesarias para la catálisis enzimática evitando que la enzima las sufra. De este modo la enzima queda intacta y puede llevar a cabo otro ciclo de reacciones simplemente cambiando la coenzima.

Las coenzimas tienen un papel fundamental en el metabolismo y en la fisiología del organismo y, de hecho, hay muchas enfermedades producidas por defectos en coenzimas. Algunos ejemplos de este tipo de enfermedades son la fenilcetonuria en la que existe un defecto de tetrahidrobiopterina o la pelagra que se produce por un déficit de NAD (Nicotinamida Adenina Dinucleótido).
ACTIVIDADES DE VITAMINAS
"Hormonas"



"Las hormonas son sustancias químicas producidas por el cuerpo que controlan numerosas funciones corporales"( DEBUSE N. Lo esencial en Sistema endocrino y aparato reproductor. Cursos "Crash" de Mosby. Harcourt-Brace. 1998.). Las hormonas actúan como "mensajeros" para coordinar las funciones de varias partes del cuerpo. La mayoría de las hormonas son proteínas que consisten de cadenas de aminoácidos. Algunas hormonas son esteroides, sustancias grasas producidas a base de colesterol.

Las hormonas van a todos lugares del cuerpo por medio del torrente sanguíneo hasta llegar a su lugar indicado, logrando cambios como aceleración del metabolismo, aceleración del ritmo cardíaco, producción de leche, desarrollo de órganos sexuales y otros.

El sistema hormonal se relaciona principalmente con diversas acciones metabólicas del cuerpo humano y controla la intensidad de funciones químicas en las células. Algunos efectos hormonales se producen en segundos, otros requieren varios días para iniciarse y durante semanas, meses, incluso años.

3.2 Funciones que controlan las hormonas

Entre las funciones que controlan las hormonas se incluyen:
§  Las actividades de órganos completos.
§  El crecimiento y desarrollo.
§  Reproducción
§  Las características sexuales.
§  El uso y almacenamiento de energía
§  Los niveles en la sangre de líquidos, sal y azúcar.
3.3 Metabolismo Hormonal

El hígado y los riñones desempeñan un papel fundamental en la depuración y excreción de estas hormonas, pero poco se sabe acerca del proceso detallado de su metabolismo. La vida media de la prolactina es de 12 minutos; la de la LH y FSH es cercana a la hora, mientras que la HCG tiene una vida media de varias horas. Si el contenido de ácido siálico es mayor, más prolongada es la supervivencia de la hormona en la circulación.

3.4 Fábrica de hormonas

Las encargadas de producir las hormonas son las glándulas endocrinas. Dentro de ellas, el primer lugar lo ocupa sin duda la hipófisis o glándula pituitaria, que es un pequeño órgano de secreción interna localizado en la base del cerebro, junto al hipotálamo. Tiene forma ovoide (de huevo) y mide poco más de diez milímetros. A pesar de ser tan pequeñísima, su función es fundamental para el cuerpo humano, por cuanto tiene el control de la secreción de casi todas las glándulas endocrinas.

La hipófisis está formada por dos glándulas separadas, conocidas como adenohipófisis y neurohipófisis. La primera corresponde al lóbulo anterior y la segunda al lóbulo posterior. Se comunica anatómica y funcionalmente a través de la sangre con el hipotálamo, lo que articula una gran coordinación entre el sistema nervioso y el endocrino.

La relación hipotálamo-hipófisis es bastante particular, puesto que, a diferencia del resto del sistema nervioso, en que las neuronas se relacionan directamente con su efector (órgano terminal que distribuye los impulsos nerviosos que recibe, activando la secreción de una glándula o contracción de un músculo), en la hipófisis las neuronas hipotalámicas no hacen contacto directo con sus efectoras. Estas últimas pasan a la sangre y alcanzan la adenohipófisis a través de una red capilar que se extiende entre el hipotálamo y la hipófisis anterior. En consecuencia, los núcleos hipotalámicos son fundamentales para el normal funcionamiento de la hipófisis.

3.5 Regulación de las hormonas

La regulación de hormonas en general incluye tres partes importantes:
§  heterogeneidad de la hormona
§  regulación hacia arriba y hacia abajo de los receptores
§  regulación de la adenil-ciclasa.
Los factores de crecimiento son producidos por expresión local de genes. Operan por unión a receptores en la membrana celular. Los receptores generalmente contienen un componente intracelular con tirosina-quinasa. Otros factores actúan a través de segundos mensajeros, tales como el AMPc y el fosfoinositol.

Los factores de crecimiento requieren condiciones especiales para actuar; para inducir la mitogénesis se requiere la exposición secuencial a varios de ellos, con limitantes importantes en cantidad y tiempo de exposición. Pueden actuar en forma sinérgica con hormonas; por ejemplo el IGF-I en presencia de FSH induce receptores para LH.

3.5.1 Regulación de arriba hacia abajo

"La modulación positiva o negativa de los receptores por hormonas homólogas es conocida como regulación hacia arriba y hacia abajo" (Bernstein, R. & S. Bernstein. 1998. Biología. McGraw - Hill. Colombia. 729 p.).

Poco se conoce sobre la regulación hacia arriba, pero se sabe que hormonas como la prolactina y la GnRH pueden aumentar la concentración de sus propios receptores en la membrana.

La principal forma biológica como las hormonas peptídicas controlan el número de receptores y por ende, la actividad biológica, es a través del proceso de internalización. Esto explica el por qué de la secreción pulsátil de las gonadotropinas para evitar la regulación hacia abajo.

"Cuando hay concentraciones elevadas de hormona en la circulación, el complejo hormona-receptor se mueve hacia una región especial en la membrana, el hueco revestido (coated pit)". A medida que esta región se va llenando sufre el proceso de endocitosis mediada por receptores. Esta región de la membrana celular es una vesícula lipídica que está sostenida por una canasta de proteínas específicas llamadas clatrinas.

Cuando está completamente ocupada la vesícula es invaginada, se separa e ingresa a la célula como una vesícula cubierta, llamada también receptosoma. Es transportada a los lisosomas donde sufre el proceso de degradación. El receptor liberado puede ser reciclado y reinsertado en la membrana celular; a su vez, tanto el receptor como la hormona pueden ser degradados disminuyendo la actividad biológica.

Este proceso de internalización no solo es utilizado para el control de la actividad biológica sino para transporte intracelular de sustancias como hierro y vitaminas.

Los receptores de membrana han sido divididos en dos clases. Los de clase I son utilizados para modificar el comportamiento celular por regulación hacia abajo; son ocupados por FSH, LH, HCG, GnRH, TSH, TRH e insulina. Los receptores de clase II son utilizados para ingreso de sustancias indispensables para la célula y para remover noxas; por ejemplo son usados por la LDL para el transporte de colesterol a las células esteroidogénicas.

3.5.2 Heterogeneidad

Las glicoproteínas tales como FSH y LH no son proteínas únicas sino una familia de formas heterogéneas (isoformas) con diversa actividad biológica e inmunológica. Las isoformas tienen variación en la vida media y peso molecular.

Esta familia de glicopéptidos incluye la FSH, LH, TSH y HCG. Todas son dímeros compuestos de dos subunidades polipeptídicas glicosiladas, las subunidades a y b. Todas comparten la subunidad a que es idéntica, conformada por 92 aminoácidos. Las cadenas b difieren tanto en los aminoácidos como en el contenido de carbohidratos, lo cual les confiere especificidad.

El factor limitante en la producción hormonal está dado por la disponibilidad de cadenas b, ya que las a se encuentran en cantidad suficiente a nivel tisular y sanguíneo.

Las glicoproteínas pueden variar en su contenido de carbohidratos. La remoción de residuos de la FSH lleva a la producción de compuestos capaces de unirse al receptor pero no de desencadenar acciones biológicas. 

La prolactina consta de 197 a 199 aminoácidos; tiene también variaciones estructurales que incluyen glicosilación, fosforilación y cambios en unión y carga eléctrica. Se encuentran varios tamaños que han llevado a utilizar términos como pequeña, grande y gran-gran prolactina.

Todas estas modificaciones e isoformas llevan a que el inmunoanálisis no siempre pueda reflejar la situación biológica.

3.6 Receptores de hormonas<BR>
"Los receptores de hormonas son selectivos tejidos formados por células que reaccionan a ciertas sustancias como las hormonas y se aceleran o cambian en alguna forma según la instrucción y el trabajo que desempeñan".( Esta definición es dada por conclusión de que las hormonas son sustancias que sirven como catalizadores y solo algunas células son sensibles a estos).

La acción selectiva de las hormonas en tejidos específicos depende de la distribución entre los tejidos de los receptores específicos y varias proteínas efectoras que median las respuestas celulares inducidas por hormonas. 

Los receptores tienen dos componentes clave:

a) Dominio específico de unión a ligando donde se une estereoespecíficamente la hormona correcta para ese receptor.

b) Dominio efector que reconoce la presencia de la hormona unida al domino del ligando y que inicia la generación de la respuesta biológica

La unión de la hormona al ligando produce cambios finos pero críticos en el ambiente del sitio efector, de manera que se inicia la transducción, puede haber interacción con otros componentes celulares para completar la señal del proceso de transducción.

Los receptores están compuestos principalmente por proteínas, pero tienen modificaciones secundarias de carbohidratos y pueden estar selectivamente inmersos en la membrana lipídica, también pueden estar fosforilados, o formar oligómeros por puentes de disulfuro o interacciones covalentes.

Para ejercer su acción, todas las hormonas deben unirse a su receptor específico, estas uniones inician mecanismos intracelulares que conllevan las respuestas celulares. Las hormonas esteroideas y tiroideas son liposolubles y entran a las células libremente y se unen a las proteínas del citosol. Los complejos resultantes translocan al núcleo donde se unen a elementos regulatorios en el DNA estimulando o inhibiendo la transcripción de genes específicos. Todas las demás hormonas se unen a los receptores celulares localizados en la membrana de las células diana. Esta unión disipara uno o más de las vías de transducción que llevan a las respuestas celulares.

3.7 Clases y clasificación de Hormonas

Inicialmente las hormonas se clasificaban en tres grupos de acuerdo a su estructura química: hormonas peptídicas y proteicas, las hormonas asteroideas y las hormonas relacionadas con aminoácidos.En vertebrados se clasifican en:
§  Aminas
§  prostaglandinas
§  esteroides
§  péptidos y proteinas.
Esteroideas- Solubles en lípidos, se difunden fácilmente hacia dentro de la célula diana. Se une a un receptor dentro de la célula y viaja hacia algún gen el núcleo al que estimula su trascripción.

No esteroideas- Derivadas de aminoácidos. Se adhieren a un receptor en la membrana, en la parte externa de la célula. El receptor tiene en su parte interna de la célula un sitio activo que inicia una cascada de reacciones que inducen cambios en la célula. La hormona actúa como un primer mensajero y los bioquímicos producidos, que inducen los cambios en la célula, son los segundos mensajeros.
§  aminas- aminoácidos modificados. Ej : adrenalina, NE
§  péptidos- cadenas cortas de aminoácidos. Ej: OT, ADH
§  proteicas- proteínas complejas. Ej: GH, PTH
§  glucoproteínas- Ej: FSH, LH
CLASIFICACIÓN

Está hecha a partir de las relaciones anatómicas entre la célula A y la célula B.

1.- Sistémica

La hormona se sintetiza y almacena en células específicas asociadas con una glándula endocrina, esta libera a la hormona al torrente sanguíneo hasta que recibe la señal fisiológica adecuada. La hormona viaja hacia un blanco celular lejano que usualmente tiene una alta afinidad por la hormona. La hormona se acumula en este blanco y se inicia una respuesta biológica que suele resultar en un cambio de concentración de un componente sanguíneo que sirve como señal de retroalimentación para la glándula endocrina que disminuye la biosíntesis y secreción de la hormona. Ejemplo: liberación del hormonas del hipotálamo en un sistema porta cerrado lo que asegura que las hormonas lleguen a la pituitaria anterior, que contiene células receptoras de dichas hormonas.

2.- Paracrina

La distancia entre las células A y B es pequeña de manera que A sintetiza y secreta la hormona que difunde hasta B. Ejemplo: producción de testosterona por las células intersticiales de Leydig, después difunde en los túbulos seminíferos adyacentes.

3.- Autocrina

Es una variación del sistema paracrino en el que la célula que sintetiza y secreta la hormona también es la célula blanco. Ejemplo: prostaglandinas.

4.- Neurotransmisores

Cuando la señal eléctrica de la neurona es sustituido por un mediador químico, (el neurotransmisor) que es secretado por el axón. El neurotransmisor difunde localmente en la sinapsis hasta el receptor de la célula adyacente. Neurotransmisores como acetilcolina y norepinefrina se clasifican como neurohormonas parácrinas.

3.8 Las hormonas de la juventud

Cuatro son las hormonas que intervienen en el Plan de Antienvejecimiento:
§  Pregnendona: Segregada en gran medida por las glándulas suprerrenales, juega un papel importante en las funciones cerebrales, específicamente en la memoria, pensamiento y alerta. Diversos estudios demuestran que es efectiva para combatir la fatiga. La producción de pregnendona declina con la edad. El organismo produce un 60% menos de esta hormona a los 75 años que a los 35 años; esto disminuye la claridad del pensamiento, la memoria, la habilidad creativa y de cálculos. No ha habido efectos adversos en humanos cuando se suministra en dosis fisiológicas.
§  De hidro epi androsterona ( DHEA ): es producida por la corteza de las gándulas suprarrenales. Estas glándulas producen unos 30 mg de DHEA al día en los hombres y la mitad en las mujeres, aunque las cantidades varían notablemente con la edad. Desde el nacimiento, la DHEA sigue varios ciclos hasta alcanzar su punto máximo alrededor de los 20 años. A partir de ese momento comienza la declinación a un ritmo del 2% anual. A los 80 años solo se tiene entre el 10% al 15% de DHEA que se tenía a los 20 años.
Entre otros efectos esta hormona ayuda a reforzar el sistema inmunológico, es un potente antioxidante, mejora la distribución de la grasa corporal, incrementa el deseo y la actividad sexual.
§  Melatonina: Segregada por la glándula pineal, ubicada en el cerebro, interviene en importantes funciones como la de regular los ciclos circadianos del hombre y los animales , el sueño, la vigilia y la adaptación a las estaciones. Estimula la actividad inmunológica y previene las enfermedades cardíacas y degenerativas. Alivia y protege de los efectos negativos del stress.
§  Somatototrofina: También llamada Hormona de crecimiento es segregada por la adeno hipófisis. Produce crecimiento de todos los tejidos del organismo capaces del mismo. Causa aumento del volumen de las células y favorece su reproducción.
Además :
§  Aumenta de la producción de proteínas
§  Disminuye de la utilización de Hidratos de Carbono.
§  Moviliza y utiliza las grasas para obtener energía
En si lo que sucede es que aumenta las proteínas del cuerpo, ahorra hidratos de carbono y gasta los depósitos de grasa. 

Es llamada por algunos la " Hormona de la juventud " porque :
§  Interviene en el rejuvenecimiento de la piel
§  Estimula el corazón, disminuyendo el riesgo de accidentes cardíacos.
§  Disminuye el riesgo de Stroke ( Accidentes cerebro vasculares )
§  Previene la osteoporosis
Esta hormona, abundante en la juventud, se reduce sustancialmente después de la cuarta década de la vida. De ella depende mucho la vitalidad, y además, es necesaria para propiciar la síntesis de proteínas de todo el organismo.

3.9 Las hormonas en la obesidad

Las hormonas asteroideos son "estructuras lipidias derivadas del ciclopentanoperhidrofenantreno"( es el nombre que se le da a una estructura de un lípido o grasa en la nomenclatura orgánica). Son sintetizadas por la transformación del colesterol en hormonas esteroideas, esto se obtiene porque la estructura química es modificada en el citoplasma y núcleo por muchas reacciones enzimáticas con cofactores importantes como el citocromo P-450.

El mecanismo de acción es mediado por receptores que están incluidos en la súper familia de características similares, la cual incluye también estrógenos, andrógenos, progesterona, glucocorticoides, aldosterona, ácido retinoico, triyodotironina, C-erb, etcétera. Estos receptores son factores de transcripción, que son activados por un ligando específico. Cuando esto ocurre, el complejo hormona-receptor activo la síntesis de proteínas en una forma muy compleja, con muchas regulaciones.

El tejido adiposo no tiene los enzimas necesarias para la síntesis de hormonas asteroideos, aunque puede transformar androstenodiona en testosterona, estrona en estradiol o cortisol en cortisona. Este intercambio en conjunto con la diferente expresión de los receptores y enzimas en tejido adiposo visceral y periférico, pueden ayudarnos a entender la diferente distribución del tejido adiposo en hombres y mujeres (androide y ginecoide) en personas normales y obesos.

La regulación del depósito de triglicéridos en el tejido odiposo depende de tres mecanismos: la lipoprotein-lipasa (LPL), el sistema beta adrenérgico y el sistema alfa-2-adrenérgico.

Los glucocorticoides incrementan la actividad glúteo-femoral de la LPL. La progesterona tiene una acción competitiva sobre los receptores de glucocorticoides en el tejido adiposo visceral, dificultando el depósito de grasa en este lugar y esto pudiera explicar porqué los hombres tienen mayor grasa central que la mujer fértil. Lo opuesto ocurre cuando alcanzan la menopausia.

En humanos los receptores de esteroideos sexuales son en poco número en el tejido adiposo glúteo-femoral, por la que uno explicación probable para la acción de los esteroides sexuales es que ellos pudieron interactuar con los receptores de glucocorticoides y quizá también a través de mecanismos no geonómicos..
physiology hormones insulin pancreas glucagon


ACTIVIDADES DE HORMONAS